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 

Abstract— Let Z  be a discrete-time normal noise that has 

the chaotic representation property. In this paper, we show 

that the number operator in the space of square integrable 

functionals of Z  can be extended to a continuous operator 

on the generalized functional space of  Z . 

 

Index Terms— Discrete-time normal noise, Generalized            

functional, Fock transform, Number operator. 
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I. INTRODUCTION 

       Let   kZ Z be a discrete-time normal noise, and 

 2L Z  the space of square integrable functionals of Z  . 

Then the number operator N  in  2L Z  is defined as 

             ,,#





  ZZN       DomN , 

where   |Z
 
is the canonical orthonormal basis of 

 ZL2
, #  denotes the cardinality of   as a finite set, 

and DomN  means the domain of  N  given by 

   








 


 
222 ,#| ZZLDomN . 

The operator N plays an important role in functional analysis 

of discrete-time normal noises. For example, N  generates 

the Ornstein-Uhlenbeck semigroup of operators on 

 ZL2 ]6[
. In a recent paper [2], N  is used to study the 

regularity of solutions to the stochastic Schrodinger equation. 

However, N is not defined on whole  ZL2
, namely 

 ,2 ZLDomN  which may cause inconvenience in its 

application. 

On the other hand, as is shown in [7], one can use the 

canonical orthonormal basis of  ZL2
to construct a 

nuclear space  ZS  such that  ZS  is densely 

contained in  ZL2
. Thus, by identifying  ZL2

 with its 

dual, one can get a Gel’fand triple 

     ZSZLZS *2  . (1.1) 

where  ZS*
is the dual of  ZS , which is endowed with  
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the strong topology, which can not be induced by any norm 
]3[
. As usual,  ZS  is called the testing functional space of 

Z , while  ZS*
 is called the generalized functional space 

of Z . It turns out [4] that the generalized functional space 

 ZS*
can accommodate many quantities of theoretical 

interest that can not be covered by  ZL2
. 

In this paper, we would like to extend the number 

operator N  to generalized functionals of Z . More 

precisely, we will define the number operator on the 

generalized functional space  ZS*
. 

Throughout this paper, N designates the set of all 

nonnegative integers and  the finite power set of N , 

namely 

     #,| N , 

where #  means the cardinality of   as a finite set. If 

Nk  and  , then we simply write k  for 

 k . Similarly, we use k\ . 

II.  PRELIMINARY 

In what follows, we always assume that  PF,,  is a 

given probability space. We use E
 
to mean the expectation 

with respect to P . As usual,  PFL ,,2  denotes the 

Hilbert space of square integrable complex-valued 

measurable functions on   PF,, . We use , and   to 

mean the inner product and norm of  PFL ,,2  , 

respectively. By convention, , is conjugate-linear in its first 

argument and linear in its second argument. 

Define2.1A sequence  
NnnZZ


 of integrable random 

variables on  PF,, is called a discrete-time normal noise 

if it satisfies: 

(i)   0| 1 nn FZE  for 0n ; 

(ii)   1| 1

2 nn FZE  for 0n . 

Here   ,1 F ,  nkZF kn  0;  for Nn and 

 nFE |  means the conditional expectation given nF . 

For a discrete-time normal noise  
NnnZZ


 on  

 PF,, , one can construct a corresponding family 

  |Z  of random variables on  PF,,  in the 

following manner 
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1Z      and     







i

ZZ i
,      ，

.
 (2.1) 

 We call   |Z the canonical functional system of 

Z . 

Lemma 2.1
]6[
 Let  

NnnZZ


 be a discrete-time normal 

noise on  PF,,  .Then its canonical functional system 

  |Z forms a countable orthonormal system in 

 PFL ,,2   . 

Let  NnZF n  ;  be the field over   

generated by a discrete-time normal noise   
NnnZZ


   on  

 PF,, . Then the canonical functional system 

  |Z
  

is also a countable orthonormal system in the 

space  PFL ,,2

  of square integrable complex-valued 

measurable functions on  PF ,,  . 

In the literature, measurableF  functions on   

are also known as functionals of Z . Thus elements of 

 PFL ,,2

 are naturally called square integrable  

Define 2.2 A discrete-time normal noise  
NnnZZ


 on  

 PF,,  is said to have the chaotic representation property 

if its canonical functional system   |Z  is total in 

 PFL ,,2

  , where  NnZF n  ; . 

Thus, if a discrete-time normal noise Z  has the chaotic 

representation property, then its canonical functional 

system   |Z is actually an orthonormal basis of 

 PFL ,,2

 . 

From now on, we always assume that  
NnnZZ


  is a 

given discrete-time normal noise on  PF,,  that has the 

chaotic representation property. 

For brevity, we use  ZL2
 to denote the space of square 

integrable functionals of Z , namely 

 

   PFLZL ,,22

 , 

where  NnZF n  ; . For 0k , we denote by kF  

the field-  generated by  kjZ j 0; , namely 

 kjZF jk  0; . 

 

We note that  ZL2
 shares the same inner product , and 

norm  with  PFL ,,2  , and moreover the canonical 

functional system   |Z of Z forms a countable 

orthonormal basis for  ZL2
, which we call the canonical 

orthonormal basis of  ZL2
. 

 

 Lemma 2.2
]7[
 Let    be the valuedN   function 

on  given by 

 















.,,1

;,,1




 


k

k
                                 (2.1) 

 Then, for 1p , the positive term series  



 
p

 

converges and moreover 









 











1

exp
k

pp k


                (2.2) 

Using the valuedN  function defined by (2.1), we 

can construct a chain of  Hilbert spaces consisting of 

functionals of Z  as follows. For 0p , we put 

   








 


 
222 ,| ZZLZS p

p

     

(2.3) 

and define 

  



 ,,, 2 ZZp

p 


  ,       ZS p ,
.
 (2.5) 

It is not hard to check that, with 
p

,  as the inner product, 

 ZS p becomes a Hilbert space. We 

write
pp

 , for  ZS p  . Clearly, it holds that 

222
, 



 Zp

p 


 ,      ZS p       (2.4) 

 Lemma2.3
]4,7[

]For 0p ,   |Z  ZS p and 

moreover the system     |Zp
forms an orthonormal 

basis for  ZS p . 

It is easy to see that 1  for all  . This implies 

that
qp
 and    ZSZS pq  whenever 

qp 0 .Thus we actually get a chain of Hilbert spaces of 

functionals of Z : 

         ZLZSZSZSZS pp

2

011     (2.7) 

We now put 

   ZSZS
p

p





0

 (2.8) 

 and endow it with the topology generated by the norm 

sequence  
0


pp

. Note that, for each 0p ,  ZS p  is 

just the completion of  ZS with respect to 
p

 . 

Thus  ZS is a countably-Hilbert space
]1,3[

. The next 

lemma, however, shows that  ZS  even has a much better 

property. 

Lemma2.4
]4,7[
The space  ZS is a nuclear space, namely 

for any 0p , there exists pq  such that the inclusion 

mapping    ZSZSi pqpq :  defined by    pqi  is 

a Hilbert-Schmidt operator. 

For 0p , we denote by  ZS p

*
 the dual of  ZS p  

and 
p

 the norm of  ZS p

*
.Then    ZSZS qp

**   and 
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qp 
 whenever qp 0 . The lemma below is then 

an immediate consequence of the general theory of 

countably-Hilbert spaces (see, e.g., [1] or [3]). 

Lemma 2.5
]4,7[
 Let  ZS*

 be the dual of  ZS and endow 

it with the strong topology. Then 

   ZSZS
p

p





0

**
 (2.9) 

 and moreover the inductive limit topology over  ZS*
 

given by space sequence   
0

*

pp ZS  coincides with the 

strong topology. 

We mention that, by identifying  ZL2
 with its dual, 

one comes to a Gel’fand triple 

     ZSZLZS *2  , (2.10) 

which we refer to as the Gel’fand triple associated with the 

discrete-time normal noise Z . 

Lemma 2.6
]4[

The system   |Z  is contained in 

 ZS  and moreover it forms a basis for  ZS  in the sense 

that 

 



  ZZ


 , ,       ZS  (2.11) 

where ,  is the inner product of  ZL2
 and the series 

converges in the topology of  ZS . 

Define 2.3
]4,7[

Elements of  ZS*
are called generalized 

functionals of Z , while elements of  ZS  are called testing 

functionals of Z . 

Thus,  ZS*
and  ZS can be accordingly called the 

generalized functional space and the testing functional space 

of Z , respectively. It turns out [4] that  ZS*
can 

accommodate many quantities of theoretical interest that can 

not be covered by  ZL2
. 

In the following, we denote by ,  the canonical 

bilinear form on    ZSZS *
 given by 

  , ,         ZSZS  ,*
. (2.12) 

Note that ,  is different from the inner product , of 

 ZL2
. 

Define 2.4
]4[
For  ZS * , its Fock transform is the 

function   on   given by 

   Z, ,              (2.5) 

 where ,  is the canonical bilinear form. 

It is easy to verify that, for  ZS *,  ,   if 

and only if  .Thus a generalized functional of Z  is 

completely determined by its Fock transform. The following 

theorem characterizes generalized functionals of Z  through 

their Fock transforms. 

Lemma 2.7
]4[
Let F be a function on  . Then F  is the 

Fock transform of an element   of  ZS*
 if and only if it 

satisfies 

  pCF   ,                  (2.6) (2.14)y for some constants 0C  and 0p . In that case, 

for
2

1
 pq , one has 

 
2

1

2









 









pq

q
C               (2.7) 

and in particular  ZSq

*
. 

Remark2.1There exists a continuous linear mapping 

   ZSZLR *2:   such that 

 ,, R ,      ZSZL   ,2

.
    (2.8) 

where , is the canonical bilinear form on 

   ZSZS *
. We call R the Riesz mapping 

 

I.  MAIN RESULT 

In this section, we define our number operator on the 

generalized functional space  ZS*
 and show its links with 

the number operator N  in  ZL2
. Our main tool is the Fock 

transforms of generalized functionals of Z . 

Recall that #  means the cardinality of  as a finite 

set. The following lemma gives an inequality concerning # , 

which will be used later. 

Lemma 3.1For all  , it holds that  # . 

Proof. Let  . Clearly,  #  holds for the case of 

  . For the case of   , by assuming 

 nkkk ,,, 21   with nkkk  21 .we have 

      #21111 21  nnkkk n 

This completes the proof. 

Proposition3.2There exists a linear operator  

   ZSZSn **:   such that 

     #n   ,        ,* ZS      (3.1) 

where  and  n are Fock transforms of   and n , 

respectively. 

Proof. Let  ZS * . Then, by Lemma 2.7, there exist 

constants 0C  and 0p  such that 
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i
i
$
   
i
i
-
p
. 

  pC   ，     . 

   

which together with Lemma 3.1 gives 

 

  1#  pC  ，  . 

 

which  together Lemma 2.7 implies that there exists a 

unique generalized functional  ZS *  such that 

 

     # ,       .      (3.2) (3.2) 

Thus we have a mapping  from  ZS*
 into itself, 

which we denote by n , namely 

 

,n  ZS *
            

Obviously n  satisfies (3.1). Now let  ZS*

21,  and 

21, be any complex number. Then, by letting 

2211    , we have 

 

      ˆ#n  

       2211 ##   

       2211  nn ，    

 

which implies that 2211  nnn  . Thus n is a 

linear operator on  ZS*
. 

 

Proposition 3.3The operator  n  is continuous on  ZS*
. 

Proof. We need only to show that the composition 

   ZSZSjn pp

**: 
 
is continuous for each 0p , 

where    ZSZSj pp

**:  denotes the natural 

embedding. 

 

Let 0p  and take 
2

3
 pq . Then, for each 

 ZSp

* , it follows from the inequality 

   ,#  that 

 

   
pP

ZZn  


 ,##

,1


 p

p   . 

 

which together with the characterization theorem 

(Lemma2.7) implies that  ZSn q

*  and 

 
p

pq

q
n
















 

2

1

12



 .                    (3.3) 

Thus,  ZSp

* , we have    ZSnjn qp

* ,  

and moreover 

   
p

pq

qpjn
















 

2

1

12



 .             (3.4) 

 

which means that pjn   is a continuous linear operator 

from  ZS p

*
to  ZS p

*
, hence a continuous linear operator 

from  ZS p

*
 to  ZS*

. □ 

From Proposition 3.2 and Proposition 3.3, we see that 

n  is actually a continuous linear operator from  ZS*
 to 

itself. 

Recall that the number operator N  in  ZL2
 is defined 

by 

 

,,#





  ZZN

     

DomN
  

where

  |Z

 is the canonical orthonormal basis of   ZL2

 ,    and means the domain of given by  

   








 


 
222 ,#| ZZLDomN

. 

The next proposition then shows the link between  

n

and 

N

. 

 Proposition3.4Let    ZSZLR *2:   be the Riesz 

mapping.  Then it holds that 

  RNnR  ,     DomN . (3.5)      

                  

where N is the number operator in  ZL2
. 

Proof. Let DomN . Then,  , we have 

        ZRRRnnR ,## 

 Z，#
 

which together with
 

         ZNZNRNRRN ,, 

  ZNZ ,#, 
 
gives 

    RNnR  .Thus,  RNnR 
  

 
follows from the arbitrariness of  . 

  

Remark 3.1In view of Proposition 3.3, we may think of n  as 

the extension of the number operator N  to the generalized 

functional space  ZS*
 and call it the number operator on  
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